Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Does oxidative stress play any role in diabetic cataract formation? ----Re-evaluation using a thioltransferase gene knockout mouse model.

Identifieur interne : 000372 ( Main/Exploration ); précédent : 000371; suivant : 000373

Does oxidative stress play any role in diabetic cataract formation? ----Re-evaluation using a thioltransferase gene knockout mouse model.

Auteurs : Jie Zhang [États-Unis] ; Hong Yan [République populaire de Chine] ; Marjorie F. Lou [États-Unis]

Source :

RBID : pubmed:28579033

Descripteurs français

English descriptors

Abstract

Oxidative stress is a known risk factor in senile cataract formation. In recent years, it has been suggested that oxidation may also be associated with cataract induced by hyperglycemia, but this concept has not been well examined or validated. Since thioltransferase (TTase) is one of the key enzymes that regulates redox homeostasis and protects against oxidative stress in the lens, we have used TTase gene knockout (KO) mice as a model to examine this new concept. Lenses from 4 months old TTase KO and wild-type (WT) mice were incubated in TC199 culture medium containing 30 mM glucose for 48 h. Each lens was assessed for opacity, graded by LOCSII system, and the wet weight was recorded after which it was homogenized in lysis buffer and analyzed for water-soluble protein and free glutathione (GSH). In vivo studies were carried out using 4 months old TTase KO and WT mouse groups. Each mouse received two consecutive days of intraperitoneal streptozotozin (STZ) injections to induce diabetes. The lenses were examined weekly for 4 weeks using a slit-lamp biomicroscope, and then extracted and analyzed for levels of GSH, water-soluble protein, ATP and protein-GSH mixed disulfide (PSSG). TTase KO lenses cultured in high glucose developed a mild cortical opacity but slightly more than that of the WT lenses. Both groups had similar contents of soluble proteins and GSH. Exposure to high glucose did not change the soluble protein level but did suppress GSH by 20% in lenses with or without TTase. STZ-induced diabetic KO mice also developed a higher degree of mild cortical lens opacity compared to that of the diabetic WT controls. Similar 15-20% losses in lens GSH and ATP were found after one-month induced diabetes in WT and KO mice. There was a 20% greater amount of PSSG in the lenses of TTase KO than the WT control. Under diabetic condition, both groups displayed more glutathionylated proteins in the beta-actin (42 kDa) and lens crystallin proteins (18-22 kDa) regions, and some additional modified proteins at 15-17 kDa and 60-70 kDa, with a total 20-30% PSSG increment in both groups. In conclusion, we have found that hyperglycemia induced some oxidative stress-associated biochemical changes with mild lens opacity in both WT and KO mice. However, these changes were only marginally higher in the TTase KO mouse than that of the WT control, suggesting that TTase deletion may only play a minor role in the early stage of hyperglycemia-induced cataract formation in the mice.

DOI: 10.1016/j.exer.2017.05.014
PubMed: 28579033


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Does oxidative stress play any role in diabetic cataract formation? ----Re-evaluation using a thioltransferase gene knockout mouse model.</title>
<author>
<name sortKey="Zhang, Jie" sort="Zhang, Jie" uniqKey="Zhang J" first="Jie" last="Zhang">Jie Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yan, Hong" sort="Yan, Hong" uniqKey="Yan H" first="Hong" last="Yan">Hong Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an</wicri:regionArea>
<wicri:noRegion>Xi'an</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lou, Marjorie F" sort="Lou, Marjorie F" uniqKey="Lou M" first="Marjorie F" last="Lou">Marjorie F. Lou</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Ophthalmology, University of Nebraska-Medical Center, Omaha, NE, USA. Electronic address: mlou1@unl.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Ophthalmology, University of Nebraska-Medical Center, Omaha, NE</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28579033</idno>
<idno type="pmid">28579033</idno>
<idno type="doi">10.1016/j.exer.2017.05.014</idno>
<idno type="wicri:Area/Main/Corpus">000337</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000337</idno>
<idno type="wicri:Area/Main/Curation">000337</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000337</idno>
<idno type="wicri:Area/Main/Exploration">000337</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Does oxidative stress play any role in diabetic cataract formation? ----Re-evaluation using a thioltransferase gene knockout mouse model.</title>
<author>
<name sortKey="Zhang, Jie" sort="Zhang, Jie" uniqKey="Zhang J" first="Jie" last="Zhang">Jie Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yan, Hong" sort="Yan, Hong" uniqKey="Yan H" first="Hong" last="Yan">Hong Yan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an</wicri:regionArea>
<wicri:noRegion>Xi'an</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lou, Marjorie F" sort="Lou, Marjorie F" uniqKey="Lou M" first="Marjorie F" last="Lou">Marjorie F. Lou</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Ophthalmology, University of Nebraska-Medical Center, Omaha, NE, USA. Electronic address: mlou1@unl.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Ophthalmology, University of Nebraska-Medical Center, Omaha, NE</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Experimental eye research</title>
<idno type="eISSN">1096-0007</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Blood Glucose (metabolism)</term>
<term>Blotting, Western (MeSH)</term>
<term>Cataract (etiology)</term>
<term>Cataract (metabolism)</term>
<term>Cataract (pathology)</term>
<term>Diabetes Mellitus, Experimental (etiology)</term>
<term>Diabetes Mellitus, Experimental (metabolism)</term>
<term>Diabetes Mellitus, Experimental (pathology)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Disulfides (metabolism)</term>
<term>Electrophoresis, Polyacrylamide Gel (MeSH)</term>
<term>Gene Knockout Techniques (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutathione (analogs & derivatives)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Disulfide (metabolism)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Hyperglycemia (complications)</term>
<term>Lens, Crystalline (metabolism)</term>
<term>Male (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Mice, Knockout (MeSH)</term>
<term>Oxidative Stress (physiology)</term>
<term>Penicillamine (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adénosine triphosphate (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Cataracte (anatomopathologie)</term>
<term>Cataracte (métabolisme)</term>
<term>Cataracte (étiologie)</term>
<term>Cristallin (métabolisme)</term>
<term>Diabète expérimental (anatomopathologie)</term>
<term>Diabète expérimental (métabolisme)</term>
<term>Diabète expérimental (étiologie)</term>
<term>Disulfure de glutathion (métabolisme)</term>
<term>Disulfures (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutathion (analogues et dérivés)</term>
<term>Glutathion (métabolisme)</term>
<term>Glycémie (métabolisme)</term>
<term>Hyperglycémie (complications)</term>
<term>Modèles animaux de maladie humaine (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Pénicillamine (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Souris knockout (MeSH)</term>
<term>Stress oxydatif (physiologie)</term>
<term>Technique de Western (MeSH)</term>
<term>Techniques de knock-out de gènes (MeSH)</term>
<term>Électrophorèse sur gel de polyacrylamide (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphate</term>
<term>Blood Glucose</term>
<term>Disulfides</term>
<term>Glutathione</term>
<term>Glutathione Disulfide</term>
<term>Penicillamine</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Glutathion</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Cataracte</term>
<term>Diabète expérimental</term>
</keywords>
<keywords scheme="MESH" qualifier="complications" xml:lang="en">
<term>Hyperglycemia</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Cataract</term>
<term>Diabetes Mellitus, Experimental</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Hyperglycémie</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cataract</term>
<term>Diabetes Mellitus, Experimental</term>
<term>Lens, Crystalline</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adénosine triphosphate</term>
<term>Cataracte</term>
<term>Cristallin</term>
<term>Diabète expérimental</term>
<term>Disulfure de glutathion</term>
<term>Disulfures</term>
<term>Glutathion</term>
<term>Glycémie</term>
<term>Pénicillamine</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Cataract</term>
<term>Diabetes Mellitus, Experimental</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hydrogen Peroxide</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" qualifier="étiologie" xml:lang="fr">
<term>Cataracte</term>
<term>Diabète expérimental</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Blotting, Western</term>
<term>Disease Models, Animal</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Gene Knockout Techniques</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Modèles animaux de maladie humaine</term>
<term>Mâle</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris knockout</term>
<term>Technique de Western</term>
<term>Techniques de knock-out de gènes</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oxidative stress is a known risk factor in senile cataract formation. In recent years, it has been suggested that oxidation may also be associated with cataract induced by hyperglycemia, but this concept has not been well examined or validated. Since thioltransferase (TTase) is one of the key enzymes that regulates redox homeostasis and protects against oxidative stress in the lens, we have used TTase gene knockout (KO) mice as a model to examine this new concept. Lenses from 4 months old TTase KO and wild-type (WT) mice were incubated in TC199 culture medium containing 30 mM glucose for 48 h. Each lens was assessed for opacity, graded by LOCSII system, and the wet weight was recorded after which it was homogenized in lysis buffer and analyzed for water-soluble protein and free glutathione (GSH). In vivo studies were carried out using 4 months old TTase KO and WT mouse groups. Each mouse received two consecutive days of intraperitoneal streptozotozin (STZ) injections to induce diabetes. The lenses were examined weekly for 4 weeks using a slit-lamp biomicroscope, and then extracted and analyzed for levels of GSH, water-soluble protein, ATP and protein-GSH mixed disulfide (PSSG). TTase KO lenses cultured in high glucose developed a mild cortical opacity but slightly more than that of the WT lenses. Both groups had similar contents of soluble proteins and GSH. Exposure to high glucose did not change the soluble protein level but did suppress GSH by 20% in lenses with or without TTase. STZ-induced diabetic KO mice also developed a higher degree of mild cortical lens opacity compared to that of the diabetic WT controls. Similar 15-20% losses in lens GSH and ATP were found after one-month induced diabetes in WT and KO mice. There was a 20% greater amount of PSSG in the lenses of TTase KO than the WT control. Under diabetic condition, both groups displayed more glutathionylated proteins in the beta-actin (42 kDa) and lens crystallin proteins (18-22 kDa) regions, and some additional modified proteins at 15-17 kDa and 60-70 kDa, with a total 20-30% PSSG increment in both groups. In conclusion, we have found that hyperglycemia induced some oxidative stress-associated biochemical changes with mild lens opacity in both WT and KO mice. However, these changes were only marginally higher in the TTase KO mouse than that of the WT control, suggesting that TTase deletion may only play a minor role in the early stage of hyperglycemia-induced cataract formation in the mice.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28579033</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>12</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-0007</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>161</Volume>
<PubDate>
<Year>2017</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Experimental eye research</Title>
<ISOAbbreviation>Exp Eye Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Does oxidative stress play any role in diabetic cataract formation? ----Re-evaluation using a thioltransferase gene knockout mouse model.</ArticleTitle>
<Pagination>
<MedlinePgn>36-42</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0014-4835(17)30160-4</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.exer.2017.05.014</ELocationID>
<Abstract>
<AbstractText>Oxidative stress is a known risk factor in senile cataract formation. In recent years, it has been suggested that oxidation may also be associated with cataract induced by hyperglycemia, but this concept has not been well examined or validated. Since thioltransferase (TTase) is one of the key enzymes that regulates redox homeostasis and protects against oxidative stress in the lens, we have used TTase gene knockout (KO) mice as a model to examine this new concept. Lenses from 4 months old TTase KO and wild-type (WT) mice were incubated in TC199 culture medium containing 30 mM glucose for 48 h. Each lens was assessed for opacity, graded by LOCSII system, and the wet weight was recorded after which it was homogenized in lysis buffer and analyzed for water-soluble protein and free glutathione (GSH). In vivo studies were carried out using 4 months old TTase KO and WT mouse groups. Each mouse received two consecutive days of intraperitoneal streptozotozin (STZ) injections to induce diabetes. The lenses were examined weekly for 4 weeks using a slit-lamp biomicroscope, and then extracted and analyzed for levels of GSH, water-soluble protein, ATP and protein-GSH mixed disulfide (PSSG). TTase KO lenses cultured in high glucose developed a mild cortical opacity but slightly more than that of the WT lenses. Both groups had similar contents of soluble proteins and GSH. Exposure to high glucose did not change the soluble protein level but did suppress GSH by 20% in lenses with or without TTase. STZ-induced diabetic KO mice also developed a higher degree of mild cortical lens opacity compared to that of the diabetic WT controls. Similar 15-20% losses in lens GSH and ATP were found after one-month induced diabetes in WT and KO mice. There was a 20% greater amount of PSSG in the lenses of TTase KO than the WT control. Under diabetic condition, both groups displayed more glutathionylated proteins in the beta-actin (42 kDa) and lens crystallin proteins (18-22 kDa) regions, and some additional modified proteins at 15-17 kDa and 60-70 kDa, with a total 20-30% PSSG increment in both groups. In conclusion, we have found that hyperglycemia induced some oxidative stress-associated biochemical changes with mild lens opacity in both WT and KO mice. However, these changes were only marginally higher in the TTase KO mouse than that of the WT control, suggesting that TTase deletion may only play a minor role in the early stage of hyperglycemia-induced cataract formation in the mice.</AbstractText>
<CopyrightInformation>Copyright © 2017 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lou</LastName>
<ForeName>Marjorie F</ForeName>
<Initials>MF</Initials>
<AffiliationInfo>
<Affiliation>School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE, USA; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Ophthalmology, University of Nebraska-Medical Center, Omaha, NE, USA. Electronic address: mlou1@unl.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 EY010595</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Exp Eye Res</MedlineTA>
<NlmUniqueID>0370707</NlmUniqueID>
<ISSNLinking>0014-4835</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>92000-26-5</RegistryNumber>
<NameOfSubstance UI="C061524">penicillamine-glutathione mixed disulfide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GNN1DV99GX</RegistryNumber>
<NameOfSubstance UI="D010396">Penicillamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002386" MajorTopicYN="N">Cataract</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003921" MajorTopicYN="N">Diabetes Mellitus, Experimental</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="Y">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055786" MajorTopicYN="N">Gene Knockout Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006943" MajorTopicYN="N">Hyperglycemia</DescriptorName>
<QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007908" MajorTopicYN="N">Lens, Crystalline</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010396" MajorTopicYN="N">Penicillamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cataract</Keyword>
<Keyword MajorTopicYN="Y">Diabetes</Keyword>
<Keyword MajorTopicYN="Y">Gene knockout mice</Keyword>
<Keyword MajorTopicYN="Y">Glucose</Keyword>
<Keyword MajorTopicYN="Y">Glutathionylated proteins</Keyword>
<Keyword MajorTopicYN="Y">Osmotic stress</Keyword>
<Keyword MajorTopicYN="Y">Oxidative stress</Keyword>
<Keyword MajorTopicYN="Y">Thioltransferase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>05</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28579033</ArticleId>
<ArticleId IdType="pii">S0014-4835(17)30160-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.exer.2017.05.014</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Nebraska</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Nebraska">
<name sortKey="Zhang, Jie" sort="Zhang, Jie" uniqKey="Zhang J" first="Jie" last="Zhang">Jie Zhang</name>
</region>
<name sortKey="Lou, Marjorie F" sort="Lou, Marjorie F" uniqKey="Lou M" first="Marjorie F" last="Lou">Marjorie F. Lou</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yan, Hong" sort="Yan, Hong" uniqKey="Yan H" first="Hong" last="Yan">Hong Yan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000372 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000372 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28579033
   |texte=   Does oxidative stress play any role in diabetic cataract formation? ----Re-evaluation using a thioltransferase gene knockout mouse model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28579033" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020